Graphical Convergence of Sums of Monotone Mappings
نویسندگان
چکیده
This paper gives sufficient conditions for graphical convergence of sums of maximal monotone mappings. The main result concerns finitedimensional spaces and it generalizes known convergence results for sums. The proof is based on a duality argument and a new boundedness result for sequences of monotone mappings which is of interest on its own. An application to the epi-convergence theory of convex functions is given. Counterexamples are used to show that the results cannot be directly extended to infinite dimensions.
منابع مشابه
Existence and convergence results for monotone nonexpansive type mappings in partially ordered hyperbolic metric spaces
We present some existence and convergence results for a general class of nonexpansive mappings in partially ordered hyperbolic metric spaces. We also give some examples to show the generality of the mappings considered herein.
متن کاملA strong convergence theorem for solutions of zero point problems and fixed point problems
Zero point problems of the sum of two monotone mappings and fixed point problems of a strictly pseudocontractive mapping are investigated. A strong convergence theorem for the common solutions of the problems is established in the framework of Hilbert spaces.
متن کاملOn the Monotone Mappings in CAT(0) Spaces
In this paper, we first introduce a monotone mapping and its resolvent in general metric spaces.Then, we give two new iterative methods by combining the resolvent method with Halpern's iterative method and viscosity approximation method for finding a fixed point of monotone mappings and a solution of variational inequalities. We prove convergence theorems of the proposed iterations in ...
متن کاملStrong convergence of variational inequality problem Over the set of common fixed points of a family of demi-contractive mappings
In this paper, by using the viscosity iterative method and the hybrid steepest-descent method, we present a new algorithm for solving the variational inequality problem. The sequence generated by this algorithm is strong convergence to a common element of the set of common zero points of a finite family of inverse strongly monotone operators and the set of common fixed points of a finite family...
متن کاملA modified Mann iterative scheme for a sequence of nonexpansive mappings and a monotone mapping with applications
In a real Hilbert space, an iterative scheme is considered to obtain strong convergence which is an essential tool to find a common fixed point for a countable family of nonexpansive mappings and the solution of a variational inequality problem governed by a monotone mapping. In this paper, we give a procedure which results in developing Shehu's result to solve equilibrium prob...
متن کامل